Sine-Net: A fully convolutional deep learning architecture for retinal blood vessel segmentation
نویسندگان
چکیده
منابع مشابه
Learning Fully-Connected CRFs for Blood Vessel Segmentation in Retinal Images
In this work, we present a novel method for blood vessel segmentation in fundus images based on a discriminatively trained, fully connected conditional random field model. Retinal image analysis is greatly aided by blood vessel segmentation as the vessel structure may be considered both a key source of signal, e.g. in the diagnosis of diabetic retinopathy, or a nuisance, e.g. in the analysis of...
متن کاملW-Net: A Deep Model for Fully Unsupervised Image Segmentation
While significant attention has been recently focused on designing supervised deep semantic segmentation algorithms for vision tasks, there are many domains in which sufficient supervised pixel-level labels are difficult to obtain. In this paper, we revisit the problem of purely unsupervised image segmentation and propose a novel deep architecture for this problem. We borrow recent ideas from s...
متن کاملRetinal Vessel Segmentation using Deep Neural Networks
Automatic segmentation of blood vessels in fundus images is of great importance as eye diseases as well as some systemic diseases cause observable pathologic modifications. It is a binary classification problem: for each pixel we consider two possible classes (vessel or non-vessel). We use a GPU implementation of deep max-pooling convolutional neural networks to segment blood vessels. We test o...
متن کاملSegNet: A Deep Convolutional Encoder-Decoder Architecture for Scene Segmentation
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG...
متن کاملDeep deformable registration: Enhancing accuracy by fully convolutional neural net
Deformable registration is ubiquitous in medical image analysis. Many deformable registration methods minimize sum of squared difference (SSD) as the registration cost with respect to deformable model parameters. In this work, we construct a tight upper bound of the SSD registration cost by using a fully convolutional neural network (FCNN) in the registration pipeline. The upper bound SSD (UB-S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Science and Technology, an International Journal
سال: 2021
ISSN: 2215-0986
DOI: 10.1016/j.jestch.2020.07.008